277
Views
29
CrossRef citations to date
0
Altmetric
Articles

Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory

ORCID Icon &
Pages 138-169 | Received 23 Mar 2017, Accepted 05 Aug 2017, Published online: 08 Sep 2017
 

Abstract

The coupled influences of shear deformation and angular velocity of a FG rotary nanobeam are going to be analyzed in the existence of external magnetic and electric fields. The effective material properties seem to be defined by the means of power law formulation. Moreover, the influences of small scale are included precisely in the framework of a nonlocal strain gradient theory. The magneto-electric potentials are supposed to vary through the thickness with a combination of linear and cosine approximations. Employing Hamilton’s principle, the nonlocal governing equations of magneto-electro-elastic functionally graded (MEE-FG) rotary size-dependent beams are derived in terms of displacement fields. Afterwards, the obtained governing equations are solved analytically to gather wave frequency, phase velocity, and escape frequency of the MEE-FG rotary nanobeam. The obtained results are validated with those of former researches. At the end, a numerical study is performed to show the influence of involved parameters on the wave propagation behaviors of MEE-FG rotary nanobeams.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.