171
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design of a 2D photonic crystal biosensor using X-shape ring resonator based on Graphene Oxide (GO) for detection of blood components

& ORCID Icon
Pages 2401-2418 | Received 25 Jul 2021, Accepted 17 May 2022, Published online: 30 May 2022
 

Abstract

Recent advances in photonic devices lead researches to be interested in designing all-optical biosensors as new alternatives to large laboratories. In this work, a two- dimensional photonic crystal biosensor based on Graphene Oxide (GO) is developed. The biosensing mechanism is based on the resonance wavelength shift due to refractive index changes of different blood components. The PhC waveguide is designed with an X-shape ring resonator and a hexagonal lattice of (GO) rods in the air background. In the proposed structure, the array of dielectric rods are with a total size of 21.4mm ×16.5 mm. For the optimized structure, the best calculated values of sensitivity (S), quality factor (Q), full width half maximum (FWHM), figure of merit (FOM), and transmission efficiency (TE) are 375 nm/RIU, 14665.8, 0.14nm, 2500 RIU-1, and 99.8% respectively. The important features of this biosensor are excellent FOM, acceptable sensitivity, and high transmission efficiency compared to other studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.