210
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Quad element millimetre-wave MIMO antenna for 5G communication

, , & ORCID Icon
Pages 1258-1273 | Received 26 Dec 2022, Accepted 27 Jun 2023, Published online: 10 Jul 2023
 

Abstract

A multiple-input and multiple-output (MIMO) system (size 35 × 35 × 0.76 mm3) of the four-element antenna with a 4.69 GHz impedance bandwidth (23.56–28.25 GHz) (millimetre wave) is proposed for 5G communication. The band capacity and radiation properties of the antenna are enhanced by modifying rectangular radiating patches with rectangular-shaped slots in ground plane. The proposed MIMO antenna achieved the isolation of 21 dB. The mutual coupling coefficient, envelope correlation coefficient (ECC), total active reflection coefficient (TARC), diversity gain (DG), mean effective gain (MEG), and channel capacity loss (CCL) are investigated to evaluate the performance attributes of diversity, and the obtained values are −21 dB, 0.007, −10 dB, 9.99 dB, ±3 dB, and 0.30 bits/sec/Hz, respectively. The robustness of the MIMO antenna is further demonstrated in different scenario under Gaussian/uniform propagation conditions. Each antenna has an average total efficiency of 92% and a maximum gain of 6.65 dBi. The testing of fabricated antenna provides excellent experimental results in comparison with simulations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.