293
Views
4
CrossRef citations to date
0
Altmetric
Articles

Characterization of polyurethane composites manufactured using vacuum assisted resin transfer molding

, , , &
Pages 13-31 | Received 18 Aug 2013, Accepted 21 Mar 2014, Published online: 22 Apr 2014
 

Abstract

Glass fiber-reinforced polymer composites have promising applications in infrastructure, marine, and automotive industries due to their low cost, high specific stiffness/strength, durability, and corrosion resistance. Polyurethane (PU) resin system is widely used as matrix material in glass fiber-reinforced composites due to their superior mechanical behavior and higher impact strength. Glass fiber-reinforced PU composites are often manufactured using pultrusion process, due to shorter pot life of PU resin system. In this study, E-glass/PU composites are manufactured using a low-cost vacuum-assisted resin transfer molding process. A novel, one-part PU thermoset resin system with a longer pot life is adopted in this study. Tensile, flexure, and impact tests are conducted on both the thermoset PU neat resin system and E-glass/PU composites. A three-dimensional finite element model is developed in a commercial finite element code to simulate the impact behavior of E-glass/PU composite for three different energy levels. Finite element model is validated by comparing it with experimental results.

Acknowledgments

The authors would like to thank Mr Craig Snyder, Dr Usama Younes, and Dr John Hayes from Bayer Material Science for their help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.