655
Views
20
CrossRef citations to date
0
Altmetric
Articles

Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network

, , , , &
Pages 409-423 | Received 07 Jul 2018, Accepted 20 Jan 2019, Published online: 14 Feb 2019
 

Abstract

The mechanical behaviour of fibre-reinforced polymer composites (FRPCs) is considered very complex due to many factors such as composition, material type, manufacturing process and end user applications. This article presents the mechanical properties and artificial neural network (ANN) modelling results of cross-ply laminated FRPCs. Twenty composite samples were fabricated by varying the number of layers of carbon fibre and glass fibre as reinforcement and polyphenylene sulphide and high-density polyethylene as matrix. Mechanical properties were measured in terms of flexural modulus, hardness, impact and transverse rupture strength. Multilayer feed-forward backpropagation ANN approach was used to predict the mechanical properties by using material type, composition and number of reinforcement and matrix layers as input variables. From 20 data patterns, 16 were used for network training and remaining 4 were used to test the models. Furthermore, trend analysis was also performed to understand the influence of inputs on developed models. It is evident from the ANN prediction results that there is good correlation between predicted and actual values within acceptable mean absolute error. The outcomes of this research will help to reduce cost and time by eliminating tedious composite property measurements and to fabricate tailored composites meeting application requirements.

Acknowledgements

We express our cordial gratitude to Prof. Dr Tahir Jamil (Late), Ex-chairman, Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan. This project was executed under his kind supervision and guidance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.