546
Views
17
CrossRef citations to date
0
Altmetric
Articles

Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behavior for the removal of organic dye

, , , &
Pages 719-739 | Received 23 Dec 2015, Accepted 21 Mar 2016, Published online: 15 Apr 2016
 

Abstract

The use of a biocompatible and thermoresponsive polymer, poly(2-hydroxyethyl methacrylate) (PHEMA) grafted onto the surface of graphene oxide (GO) as an adsorbent for the removal of a cationic dye (methylene blue [MB]) from an aqueous solution is examined in this work. GO–PHEMA forms a hydrogel in water thus overcoming the problem faced by carbon-based adsorbent materials during post-treatment (i.e., separation of adsorbent from the aqueous phase). The GO–PHEMA composite was synthesized using a green approach through dispersion polymerization in supercritical CO2. The successful preparation of this composite was confirmed by a series of characterization techniques. The adsorption behavior of the composite toward MB such as the effect of the adsorbent dosage, pH, contact time, dye concentration, and recyclability were observed. In addition, the adsorption isotherm, kinetics and thermodynamics were investigated. According to the experimental data, the adsorption parameters were found to fit well into the Freundlich adsorption isotherm with a correlation coefficient of 0.975 and a maximum predicted adsorption capacity of 39.41 mg g−1 at 25 °C. The adsorption kinetics studies showed that the adsorption behavior followed a pseudo-second-order reaction. On the other hand, the thermodynamics studies showed that the adsorption of MB on GO–PHEMA composite followed spontaneous and endothermic adsorption process with an efficient adsorption temperature at 45 °C. The experimental results also showed that the GO–PHEMA composite could remove 99.8% of the dye in 45 min. Therefore, GO–PHEMA composite is a favorable green adsorbent for environmental applications.

Funding

This work was supported by the 2014 Yeungnam University Research [grant number 214A380226].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 574.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.