480
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Surface modification of high-performance polyimide fibres by using a silane coupling agent

, , , , , , & show all
Pages 687-698 | Received 27 Jun 2018, Accepted 18 Sep 2018, Published online: 13 Oct 2018
 

ABSTRACT

The silane coupling agent 3-aminopropyltriethoxysilane (KH-550) was used to modify the surface of two kinds of high-performance polyimide (PI) fibres (i.e., PI-1 and PI-2). The surface chemical composition, morphologies and roughness of modified PI fibres were characterised by XPS, SEM and AFM. Results showed that the elemental ratio between O and C, the surface oxygen concentration and the surface roughness increased with KH-550 concentration. However, the interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) values of PI fibre/epoxy resin composites increased and then decreased with KH-550 concentration. When KH-550 concentration was increased to 4 wt%, the IFSS and ILSS values reached their maximum point. At this point, the IFSS values were found increase by 17.3% and 8.3% for PI-1 and PI-2, respectively, compared with their pristine state. Meanwhile, the ILSS values of PI-1- and PI-2-reinforced composites were found increase by 22.4% and 24.1%, respectively.

Graphical Abstract

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Key R&D Program of China [2017YFB0308300];

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 574.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.