79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct ink writing of high-performance multi-level interlocked laminate-network titanium matrix composites

, , , , , & show all
Pages 441-455 | Received 27 Aug 2023, Accepted 24 Sep 2023, Published online: 02 Oct 2023
 

ABSTRACT

In this study, multi-level laminate-network boron nitride nanosheets (BNNSs)/TC4 composite with interlayer interlocking was fabricated using a facile direct ink writing (DIW) technique. In-situ 3D nano-configurations consisting of BNNSs and TiBx nanophases distributed around TC4 matrix particles formed the first-level network structure, while the above composite layers and TC4 layers with interlayer interlocking formed the second-level laminate structure. It exhibits a comparable high tensile strength of around 1203 MPa, compared to composites with a single-network structure, while demonstrating a 20% higher toughness of 55.8 MJ/m3. The interlayer interlocking microstructure interlayer could be responsible for the strength enhancement, which benefits the stress transfer between layers. The improved ductility could be attributed to the crack blocking adduced by the laminate structure and the 3D network in the composite layers.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary data

Supplemental data for this article can be accessed online at https://doi.org/10.1080/09276440.2023.2264039

Additional information

Funding

This work was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under [Grant number KYCX21_3328]; The Research Foundation for the National Natural Science Foundation of China under [Grant number 51575245]; The National Science Foundation of Jiangsu Province under [Grant number BK20220533]; The Open Fund of Key Laboratory of Marine Materials and Related Technologies, CAS and Zhejiang Key Laboratory of Marine Materials and Protective Technologies under [Grant number 2020K06]; The senior Talent Foundation of Jiangsu University under [Grant number 18JDG030].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 574.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.