227
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Square-tooth split ring resonator – a novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design

&
Pages 1821-1829 | Received 04 Oct 2013, Accepted 03 Nov 2013, Published online: 10 Jan 2014
 

Abstract

A square multiband truncated microstrip patch antenna was investigated using a square-tooth split ring resonator for multiband applications in both S- and C-bands. The square-tooth split ring resonator is formed from metallic inclusions in a substrate to create a metamaterial. We introduce a new square-tooth split ring resonator which increases the radiation of the antenna as well as the bandwidth. This new design creates a slow wave structure. The square-tooth addition to the split ring resonator works like a slow wave structure. The square-tooth split ring resonator design is compared with the simple split ring resonator design. The square-tooth design has four bands with center frequencies of 3.88, 4.81, 5.4, and 5.62 GHz, whereas design with the simple split ring resonator has just three bands with center frequencies of 3.88, 4.74, and 5.50 GHz. The bandwidth is increased by 20% to 30% using the square-tooth split ring resonator compared to the simple split ring resonator.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.