288
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop

, , , &
Pages 1291-1296 | Received 22 Dec 2014, Accepted 23 Mar 2015, Published online: 20 Apr 2015
 

Abstract

A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach–Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported in part by the National Natural Science Foundation of China [grant number 61306061], in part by the Fundamental Research Funds for the Central Universities [grant number JB142001-9], [grant number K5051301016], [grant number K5051301010], and in part by the China 111 Project [grant number B08038].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.