302
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Performance study of terrestrial multi-hop OFDM FSO communication systems with pointing errors over turbulence channels

, , , &
Pages 1403-1413 | Received 19 May 2015, Accepted 28 Jan 2016, Published online: 13 Jun 2016
 

Abstract

The free-space optical communication systems attract significant research and commercial interest the last few years, due to their high performance and reliability characteristics along with their, relatively, low installation and operational cost. Moreover, due to the fact that these systems are using the atmosphere as propagation path, their performance is varying according to its characteristics. Here, we present the performance analysis of a serially relayed radio-on-free-space-optical (RoFSO) communication system which employs the orthogonal frequency division multiplexing technique, with a quadrature amplitude modulation scheme, over atmospheric turbulence channels modelled by either the Gamma–Gamma or the Gamma distribution model. For this RoFSO communication link, we derive closed-form mathematical expressions for the estimation of its average bit error rate and outage probability, taking into account the relays’ number, the atmospheric turbulence and the pointing errors effect. Furthermore, for realistic parameter values, numerical results are presented using the derived mathematical expressions, which are verified through the corresponding numerical simulations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.