218
Views
1
CrossRef citations to date
0
Altmetric
Articles

Combination of wavelet transform and singular value decomposition-based contrast enhancement technique for target detection in UAV reconnaissance thermal images

&
Pages 606-617 | Received 22 Oct 2017, Accepted 25 Mar 2018, Published online: 03 Jan 2019
 

ABSTRACT

In Aerial surveillance, thermal images acquired by unmanned aerial vehicle (UAV) are greatly affected due to various external interferences, which results in a low contrast image. Widely used conventional contrast enhancement methods such as histogram equalization and dynamic range partitioning techniques suffer from severe brightness changes and reduced sharpness, which in turn fail to preserve the edge details of the image. Thus for efficient target detection, it is essential to develop effective thermal infrared image contrast and edge enhancement technique. In this paper, wavelet transform (WT) and singular value decomposition (SVD)-based image enhancement technique is attempted for the target detection using thermal images captured by UAV. The discrete wavelet transform (DWT), stationary wavelet transform (SWT) and SVD are used for texture feature enhancement, edge enhancement and illumination correction, respectively. The experimental results show that the proposed technique yields higher entropy (6.7485), EMEE (2.1212), MSSIM (0.8719) and lower AMBE (21.9049) values when compared to other existing techniques.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.