131
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

All-optical wavelength reuse with simultaneous upstream data and PPS timing signal transfer for flexible optical access networks

, , , , &
Pages 1305-1310 | Received 08 Mar 2019, Accepted 25 Apr 2019, Published online: 23 May 2019
 

Abstract

All-optical wavelength reuse is a viable approach for realization of low cost colourless ONUs. We experimentally demonstrate a novel all-optical wavelength reuse technique with simultaneous upstream data and pulse-per-second signal transfer, exploiting EDFA gain saturation with a holding beam. A DFB laser is modulated with 8.5 Gbps data and transmitted downstream over 24.7 km fibre. A saturated EDFA located at the ONU is adopted to reduce the extinction ratio of the downstream data from 6.2 dB to 839.1 mdB. This allows for data rewrite and wavelength reuse for upstream transmission. Receiver sensitivities of −20.19 dBm and −19.60 dBm are achieved at back-to-back analysis and 24.7 km downstream link respectively. A holding beam is further exploited to attain simultaneous carrier reuse and PPS clock upstream transfer. PPS jitter stability of 1.01 × 10-08 ns and 6.64 × 10-08 ns are attained respectively. This work offers a convenient all-optical wavelength reuse solutions for optical access networks.

Additional information

Funding

We are grateful for Research Funding and support from Telkom, Dartcom, Ingoma, CISCO, DST, CSIR, NLC, NRF, THRIP and ALC.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.