109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On the block error rate of FSO links with diversity over mixture gamma turbulence channels

, , , &
Pages 927-935 | Received 04 Dec 2020, Accepted 21 Jul 2021, Published online: 11 Aug 2021
 

Abstract

Recently, wireless communications started incorporating FSO systems to a large extent due to their high bandwidth and the low installation and operational cost. However, their performance deteriorates significantly due to the atmosperic conditions. A very significant issue is the atmospheric turbulence which causes the scintillation effect and results in fast power fluctuations at the receiver which can be modelled through the appropriate stochastic models. In this work, for first time to the best of our knowledge, the average block error rate (BLER) performance of a terrestrial FSO communication link with receivers’ diversity is estimated and new mathematical expressions are derived, for weak to strong turbulence channels with the Mixture-Gamma distribution which emulate accurately the most of the well-known turbulence models. The derived expressions are significant, especially for high data rates FSO communication systems and networks, because by estimating accurately the BLER performance, the appropriate coding scheme, for links designing, can be selected.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

HEN acknowledge that this work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No: 871900. NAA acknowledges that this research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.