117
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Parametric oscillation with squeezed vacuum reservoirs

Pages 813-832 | Received 06 May 2004, Accepted 21 Jul 2004, Published online: 15 Aug 2006
 

Abstract

Employing the quantum Hamiltonian describing the interaction of a two-mode light (signal–idler modes) generated by a non-degenerate parametric oscillator (NDPO) with two uncorrelated squeezed vacuum reservoirs (USVR), we derive the master and the Fokker–Planck equations. The corresponding Fokker–Planck equation for the Q-function is then solved employing a propagator method developed by K. Fesseha [J. Math. Phys. 33 2179 (1992)]. Making use of this Q-function, we calculate the quadrature fluctuations of the optical system. From these results we infer that the signal–idler modes are in squeezed states. When the NDPO operates below threshold we show that, for a large squeezing parameter, a squeezing amounting to a noise suppression approaching 100% below the vacuum level in one of the quadratures can be achieved.

Acknowledgments

I would like to thank K. Fesseha, M. Lewenstein and A. Sanpera for fruitful discussions. I acknowledge financial support by the Deutscher Akademischer Austausch Dienst (DAAD).

Notes

Additional information

Notes on contributors

A. Mebrahtu Footnote*

Email: [email protected]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.