75
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Field enhancement and large optical nonlinearity in Ag nanocomposite polymer film

, , &
Pages 1000-1003 | Received 18 Dec 2008, Accepted 04 Mar 2009, Published online: 18 May 2009
 

Abstract

We report a simple in situ synthesis for Ag nanocomposite polymer film. The extinction spectrum and the distribution of the local field intensities for Ag nanoparticles are performed by means of the dipole discrete approximation. The local field intensity is enhanced over 20 times to that of the incident light at the peak wavelength of the extinction spectrum. Nonlinear optical measurements, performed by using the Z-scan techniques, are presented afterwards. Giant enhancement of nonlinear optical responses is found for Ag/PMMA film compared with pure PMMA (polymethyl methacrylate) film. The nonlinear refractive index γ of the Ag/PMMA film is measured to be 3.708 × 10−2 cm2 GW−1. The enhanced optical properties are due to the surface plasmon resonance of Ag nanoparticles. These results are in agreement with the previous field calculations. Analyzed with respect to Stegeman figures of merit, Ag/PMMA nonlinear polymer film shows promise for practical use in ultrafast optical devices.

Acknowledgement

The project is supported by the Scientific Research Foundation of the Anhui University of Architecture.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.