101
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Cold cesium molecules: from formation to cooling

, , , , , , , , & show all
Pages 2089-2099 | Received 24 Mar 2009, Accepted 01 Jul 2009, Published online: 10 Aug 2009
 

Abstract

Recent experiments on formation of translationally cold ground state molecules, their subsequent broadband vibrational cooling and study of rotations are presented together with the related modeling. We produce cold molecules by photoassociating pairs of cold cesium atoms that can decay into ground state molecules in different vibrational levels. Then we laser cool the vibrational degree of freedom by selecting a single target vibrational level. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. Results for vibrational cooling into the v = 0, v = 1, v = 2 and v = 7 level of the singlet X 1Σ g ground electronic state are presented. Depletion spectroscopy is performed to study the rotational distribution of the created molecules. In the theoretical modeling of the process we are able to reproduce our results and investigate the prospects for a ‘complete’ cooling of molecules, including also their rotational degree of freedom.

Acknowledgements

Fundamental work on earlier experiments and on their theoretical interpretation by Matthieu Viteau, Amodsen Chotia, Nadia Bouloufa and Olivier Dulieu are gratefully acknowledged. This work is supported by the ‘Institut Francilien de Recherche sur les Atomes Froids’ (IFRAF) and (in Toulouse) by the Agence Nationale de la Recherche (Contract ANR–06-BLAN-0004) and the Del Duca foundation. M.A. thanks the EC-Network EMALI and the “Université Franco-Italienne” (Galileo Project). A.F. thanks the RTRA ‘Triangle de la Physique’ for support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.