198
Views
84
CrossRef citations to date
0
Altmetric
Paper

Partially coherent sources with helicoidal modes

, , &
Pages 539-554 | Received 09 Apr 1997, Published online: 03 Jul 2009
 

Abstract

On the basis of the modal theory of coherence, we study partially coherent sources whose modes belong to the class of Laguerre-Gauss functions for which the Laguerre polynomial has zero order. These modes present a phase profile with a helicoidal structure, which is responsible for notable phenomena, such as the propagation of optical vortices, beam twisting, and the presence of dislocations in interference patterns. By suitably choosing the eigenvalues associated with such modes, different partially coherent sources are obtained: sources with a flattened Gaussian profile, twisted Gaussian Schell-model sources with a saturated twist, and a new class of sources having an annular profile. Owing to the shape-invariance property of the underlying modes, the fields radiated by these sources do not change their transverse profile through propagation, except for scale and phase factors. We also prove that, if any such source is covered by a circularly symmetric filter, the new modal structure can be found in a straightforward manner.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.