439
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

The deformation-induced zone below large and shallow nanoindentations: A comparative study using EBSD and TEM

, &
Pages 879-887 | Received 03 Dec 2007, Accepted 18 Sep 2008, Published online: 04 Dec 2008
 

Abstract

A comparison is made between the deformation-induced zone beneath nanoindentations obtained by Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Since there are resolutional limitations associated with EBSD, especially at very small scan sizes, it is not known how accurately the deformed volume beneath the imprints can be characterized. To aid in answering this question, cross-sectional EBSD and TEM samples of nanoindentations were fabricated by means of a Focused Ion Beam (FIB) workstation, analyzed, and subsequently compared with each other. For large indentations as well as for shallow ones, agreement of the determined zones was found. The results of the EBSD and TEM experiments were also used to characterize the deformed volumes. In the EBSD maps of large indentations, strongly confined deformation patterns were found, while for the shallow indentations the observed patterns are more diffuse. The TEM micrographs and the Selected-Area Electron Diffraction (SAED) support these facts and give insight into the dislocation structure of the deformation zone.

Acknowledgments

The authors thank Professor G. Dehm and J. Thomas for assistance with the TEM investigations. Financial support under the frame of FWF (Fonds zur Förderung der wissenschaftlichen Forschung) through Project P 17375-N07 is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.