132
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of nanocrystalline MoBi2Te5 thin films for photoelectrode applications

, , &
Pages 563-571 | Received 07 Feb 2012, Accepted 22 May 2012, Published online: 25 Jun 2012
 

Abstract

Molybdenum bismuth telluride thin films have been prepared on clean glass substrate using arrested precipitation technique which is based on self-organized growth process. As deposited MoBi2Te5 thin films were dried in constant temperature oven at 110°C and further characterized for their optical, structural, morphological, compositional, and electrical analysis. Optical absorption spectra recorded in the wavelength range 300–800 nm showed band gap (E g) 1.44 eV. X-ray diffraction pattern and scanning electron microscopic images showed that MoBi2Te5 thin films are granular, nanocrystalline having rhombohedral structure. The compositional analysis showed close agreements in theoretical and experimental atomic percentages of Mo4+, Bi3+, and Te2− suggest that chemical formula MoBi2Te5 assigned to as deposited molybdenum bismuth telluride new material is confirmed. The electrical conductivity and thermoelectric power measurement showed that the films are semiconducting with n-type conduction. The fill factor and conversion efficiency was characterized by photoelectrochemical (PEC) technique. In this article, we report the optostructural, morphological, compositional, and electrical characteristics of nanocrystalline MoBi2Te5 thin films to check its suitability as photoelectrode in PEC cell.

Acknowledgments

M.M. Salunkhe is indebted to University Grant Commission for providing the departmental facility.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.