237
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

In situ stress relaxation mechanism of a superelastic NiTi shape memory alloy under hydrogen charging

, &
Pages 50-57 | Received 09 Sep 2016, Accepted 07 Dec 2016, Published online: 09 Jan 2017
 

Abstract

On account of its good biocompatibility, superelastic Ni–Ti arc wire alloys have been successfully used in orthodontic clinics. Nevertheless, delayed fracture in the oral cavity caused by hydrogen diffusion can be observed. The in situ stress relaxation susceptibility of a Ni–Ti shape memory alloy towards hydrogen embrittlement has been examined with respect to the current densities and imposed deformations. Orthodontic wires have been relaxed at different martensite volume fractions using current densities of 5, 10 and 20 A/m2 at 20 °C. The in situ relaxation stress shows that, for an imposed strain at the middle of the austenite–martensite transformation, the specimen fractures at the martensite–austenite reverse transformation. However, for an imposed strain at the beginning of the austenite–martensite plateau, the stress decreases in a similar way to the full austenite structure. Moreover, the stress plateau has been recorded at the reverse transformation for a short period. For the fully martensite structure, embrittlement occurs at a higher stress value. This behaviour is attributed to the interaction between the in situ austenite phase expansion and the diffusion of hydrogen in the different volume fractions of the martensite phase, produced at an imposed strain.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.