1,749
Views
1
CrossRef citations to date
0
Altmetric
Full Critical Reviews

Confinement effects on compressive and ballistic performance of ceramics: a review

, &
Pages 287-312 | Received 17 Feb 2020, Accepted 25 Sep 2020, Published online: 13 Oct 2020
 

ABSTRACT

Ceramic materials have been extensively used as armour materials for nearly 50 years and continue to attract great interest in the field of defense technology. As confinement is crucial for ceramics to achieve enhanced performance, it has become indispensable in ceramic armour systems. This review aims to explore the effects of a wide variety of confinement on ceramic performance, so as to provide scientific insights for further exploration and development of ceramic materials and ceramic-based armour systems for both researchers and engineers. This work first characterises multiaxial compressive experiments of ceramics, explores confinement-induced brittle to ductile transition, and presents pressure-dependent micromechanical and phenomenological constitutive models. Subsequently, the change of fracture mode under compression and the reduction of damage extent under projectile impact are separately discussed. Enhancement in ballistic performance by confining and prestressing ceramics is also introduced, with corresponding physical mechanisms explored. Last but not least, insights into future opportunities and challenges are presented.

Acknowledgements

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (11802221, 11972185 and 51875441), the National Key R&D Program of China (2018YFB1106400), Zhejiang Provincial Natural Science Foundation of China (LGG18A020001), the Natural Science Fund Project in Jiangsu Province of China (BK20190392), and the Open Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-I-0219K01 and MCMS-E0219K02).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China [grant number 11802221, 11972185, 12072250 and 51875441], the National Key R&D Program of China [2018YFB1106400], Zhejiang Provincial Natural Science Foundation of China [LGG18A020001], the Natural Science Fund Project in Jiangsu Province of China [BK20190392], and the Open Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures [MCMS-I-0219K01 and MCMS-E0219K02].

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.