160
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Controlled bridge transfer (CBT) gas metal arc process for steel sheets joining

, , , &
Pages 268-273 | Received 11 Mar 2009, Accepted 07 Jul 2009, Published online: 04 Nov 2011
 

Abstract

In non-pulsed gas metal arc welding (GMAW), spatter can be reduced by lowering the short-circuit current to a low level just before the re-arcing. The reduction in spatter requires an improvement in the accuracy of predicting the re-arcing by stabilizing the metal transfer and improving the robustness of the accuracy against disturbances. The controlled bridge transfer (CBT) process optimizes the accuracy of predicting the re-arcing in real time in response to the metal transfer, realizes spatter reduction and stable arc in non-pulsed GMAW. Traditionally, GMAW is carried out using electrode positive polarity. However, this polarity is not sufficient for welding extra-thin steel sheets, specifically those thinner than 1.0 mm. With electrode negative (EN) CBT process, although slight arc voltage fluctuation occurs caused by the behaviour of cathode spots on the tip of the wire during EN polarity GMAW, instantaneous voltage uses command computation to improve the transient response against the disturbance. Consequently, a stable arc can be obtained without increasing the number of short circuits in a unit time to obtain spatter-free welds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 726.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.