160
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bondability of Cu wire on Cu substrate with Sn plating by ultrasonic

&
Pages 83-90 | Received 15 Apr 2010, Accepted 18 Sep 2009, Published online: 08 Mar 2013
 

Abstract

This study evaluated both the joint strength of copper wire on a copper substrate with tin plating and the joint reliability of copper wire bonding after heat treatment. The suitable tin thickness and bonding conditions, which are stage temperature, wire bonding power and bonding time, were chosen by the peel test after copper wire bonding. Tin thickness of 10 m showed a high bonding rate under the conditions of stage temperature 373 K, bonding power 500–700 mW and bonding time 30 50 ms. Before heat treatment, the peel strength of the copper wire on the copper substrate with tin plating conditions was weaker than that of gold wire on a gold substrate. After heat treatment for more than 70 h at 298 K, the peel strength of the copper wire became higher than that of the gold wire and twice as high as the initial bonding strength. The tin layer remained between the copper wire and copper substrate before heat treatment. When the samples were held at 298 K, tin reacted with copper and turned into a Cu–Sn intermetallic compound. Upon completion of this reaction at 298 K for over 70 h, the soft tin layer between the copper wire and copper substrate disappeared. Therefore, the peel strength of copper wire after heat treatment increased. These results were observed by scanning electron microscope images of the interface between the copper wire and copper substrate before and after heat treatment.

Acknowledgements

We would like to express our gratitude to the FIB and SEM staff of the Stanford Nanocharacterization Laboratory of Stanford University for their help with FIB and SEM examinations and to the Mark Stephen Oliver, Alex Wei-Heng Hsing, Taek Soo Kim and other students of the Dauskardt Lab., Department of Materials Science and Engineering, Stanford University for their help with AFM measurement and peel tests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 726.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.