108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanical performance of dissimilar friction stir welded lap-joint between aluminium alloy 6061 and 316 stainless steel

, ORCID Icon, &
Pages 101-110 | Received 22 Nov 2022, Accepted 07 Mar 2023, Published online: 22 Mar 2023
 

Abstract

The dissimilar lap-joint of the AA6061 to 316 stainless steel was produced by friction stir welding. Changing microstructure, joint interface, and mechanical performances via welding rate were revealed. A wave interface pattern was found at the low welding rate with a free oxide layer. The interface became flat at the high welding rate with the oxide film formation. The diffusion and intermetallic compounds (IMCs) layers were formed on the interface and their thickness decreased via increasing the welding rate. The highest joint strength was obtained at the welding rate of 75 mm/min but strongly reduced with growing the welding rate. The strength was dramatically correlated with the bonding area, diffusion thickness and interface morphology instead of the IMCs layer thickness. At the low welding rate, the joint was fractured via ductile behaviour with a lot of dimples found on the fracture surface of 316 stainless steel.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 726.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.