233
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Investigation and modelling of process parameters and workpiece dimensions influence on material removal rate in CWEDT process

, &
Pages 715-728 | Received 25 Oct 2012, Accepted 24 Feb 2014, Published online: 24 Mar 2014
 

Abstract

Cylindrical wire electrical discharge turning (CWEDT) is a special form of wire electrical discharge machining (WEDM) process, which uses submerged rotation spindle as a clamping device for workpiece rotation in order to produce cylindrical parts. This study aims at determining influence on material removal rate (MRR) of CWEDT as an objective function. In the preliminary experiments, the widely used X5CrNi18–10 (DIN) and hard machinable S390PM (DIN) were used. The results of preliminary experiments showed that the type of steel is not the factor that has a significant influence on MRR. Pulse maximum current, pulse pause time, rotation speed, length of discharge area and cutting radius were used in MRR mathematical modelling by neural network programming. The results of the study exhibit that among the machining parameters, the pulse maximum current has the strongest influence on MRR. When the pulse maximum current increases, MRR increases as well. The discharge area length has an influence on MRR only on higher pulse maximum current values, and by the increase of the discharge area length, the MRR also increases. The derived mathematical model for MRR, which was finally validated and tested, enables calculation of complex cylindrical part production machining time for the given experimental set-up condition.

Additional information

Funding

This research work was supported by Ministry of Science, Education and Sport of the Republic of Croatia and by Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University. The authors are grateful to Chief Engineer Dipl. Ing. Drazen Veselovac, Department of Monitoring and EDM/ECM, for support in the experimentation part of this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 528.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.