554
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

User-assisted integrated method for controlling level of detail of large-scale B-rep assembly models

, ORCID Icon, &
Pages 881-892 | Received 13 Aug 2017, Accepted 28 Feb 2018, Published online: 06 Mar 2018
 

ABSTRACT

In recent times, there is a growing demand for technologies that control the level of detail (LOD) of large-scale three-dimensional (3D) computer-aided design (CAD) models. In particular, in industrial plants and in the construction industry, there is a significant need for simplification of large-scale models, because the number of models to be dealt with is tremendously large and their complexity is high. The degree of automation is, however, very low in these industries. As a result, many additional costs arise in the process of manually regenerating the 3D CAD models by the users. To resolve this problem, this study suggests a way to control effectively the LOD of large-scale B-rep assembly models. The proposed method consists of filtering, to remove those parts that ought to be removed, and progressive control, to remove sequentially the features acquired by volume decomposition. The user intervenes in the progressive control stage and adjusts the LOD for each component of the assembly. Based on the proposed method, a prototype system was implemented and experiments were performed for two test cases. The data size of the two test cases decreased, in average, to 65% in the first stage and 85% in the second stage. It was also found that the proposed component-level LOD control method is suitable and practical for a large-scale model.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by the Plant Research Program [Project ID: 14IFIP-B091004-01] funded by the Ministry of Land, Infrastructure and Transport, and by the Industrial Core Technology Development Program [Project ID: 10063452] funded by the Ministry of Trade, Industry and Energy of the Korean Government. The authors gratefully acknowledge these supports.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 528.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.