106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive radial basis function neural network sliding mode control of robot manipulator based on improved genetic algorithm

, , , &
Received 16 Nov 2022, Accepted 23 Nov 2023, Published online: 19 Dec 2023
 

ABSTRACT

Since the trajectory-tracking control performance of multi-joint robot manipulator may be degraded due to modeling errors and external disturbances, this paper designs a new adaptive robot manipulator trajectory tracking control method through improved genetic algorithm and radial basis function neural network sliding mode control (IGA-RBFNNSMC). Firstly, the genetic algorithm (GA) is improved by establishing superior populations centered on individuals with high fitness values and selecting individuals in the superior populations for crossover and variation. Secondly, the improved genetic algorithm (IGA) is used for the optimization of the center vector and width vector of the Gaussian basis function in radial basis function (RBF) neural network. Then, based on the dynamics model of the robot manipulator, the modeling errors are approximated by RBF neural network and eliminated by sliding mode control (SMC), and the Lyapunov theorem is used to prove the stability and convergence of the control system. Finally, a two-joint robot manipulator is taken as the research objective and the simulation results show that IGA can significantly reduce the solution time on the basis of guaranteed accuracy and IGA-RBFNNSMC can make the trajectory tracking control accurate and more efficient, which proves the effectiveness of the proposed control method.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Sichuan Province Science and Technology Program Project (Key R&D Project) [No.2022YFG0072] and Sichuan Province Science and Technology Program Project [No.2022ZHCG0049].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 528.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.