48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-agent modelling of cyber-physical systems for IEC 61499-based distributed intelligent automation

&
Received 30 May 2022, Accepted 02 Nov 2023, Published online: 21 Dec 2023
 

ABSTRACT

Traditional industrial automation systems developed under centralized architectures are statically programmed with determined procedures to perform predefined tasks in structured environments. The major challenges for these legacy systems are that they are unable to automatically discover alternative solutions, flexibly coordinate reconfigurable modules and actively deploy corresponding functions, to quickly respond to frequent changes and intelligently adapt to evolving requirements in dynamic environments. This paper presents a two-layer architecture modelling framework, including the high-level cyber module designed as multi-agent computing model and the low-level physical module designed as agent-embedded IEC 61499 function block model, to enable real-time adaptation at the device level and run-time intelligence throughout the whole system. The design results in a new computing module for high-level multi-agent-based automation architectures and a new design pattern for low-level function block modelled control solutions. The design is demonstrated and evaluated through various tests on the multi-agent simulation model developed in NetLogo and the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The result shows that the design is feasible with improved performances and expected capabilities to respond to major challenges in Industry 4.0.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant CDE 486462-15.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada [486462-15].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 528.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.