424
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Knowledge-oriented task and motion planning for multiple mobile robots

ORCID Icon, &
Pages 137-162 | Received 04 Apr 2017, Accepted 31 Oct 2018, Published online: 30 Nov 2018
 

ABSTRACT

Robotic systems composed of several mobile robots moving in human environments pose several problems at perception, planning and control levels. In these environments, there may be obstacles obstructing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an efficient combination of task and motion planning is required. Even more if we assume a cooperative system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by one robot clearing the way to another one. In this paper, we cope with this problem by proposing κ-TMP, a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based motion planner, and reasoning processes over the ontologies that code the knowledge on the problem. The significance of the proposal relies on how geometric and physics information is used within the computation of the heuristics in order to guide the symbolic search, i.e. how an artificial intelligence planning method is combined with low-level motion planning to achieve a feasible sequence of actions (composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been validated with several simulated scenarios (using up to five robots that need to collaborate with each other to reach the goal state), showing how the method is able to solve challenging situations and also find an efficient solution in terms of power.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

Additional information

Funding

This work is partially supported by the Spanish Government through the project DPI2016-80077-R. Aliakbar Akbari is supported by the Spanish Government through the grant FPI 2015.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 373.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.