164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design for reversed additive manufacturing low-melting-point alloys

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Received 04 Jun 2023, Accepted 17 Sep 2023, Published online: 26 Sep 2023
 

Abstract

Additive manufacturing (AM) technologies have been widely used in construction, medical, military, aerospace, fashion, etc. As AM advances, increasing new AM-based manufacturing methods have been developed (e.g. CNC machining and AM hybrid manufacturing). Recently, a new manufacturing method ‘reversed additive manufacturing (RAM)’ was proposed by the authors. First, the designed objective part needs to be reversed using a bounding box, obtaining the reversed outside part. Then fabricate the reversed outside part using AM with dissolvable material (e.g. PLA). After that, fill the reversed outside part using aimed material (e.g. low-melting-point alloys) of the objective part. Lastly, soak the whole part into the dissolvent to dissolve the outside part, obtaining the final objective part. In this paper, design for RAM is proposed. Print orientation, print parameter settings, injection parameter settings, shrinkage, cost and post-processing are discussed. Experiments with several lattice structures are carried out and case studies are demonstrated. The findings of this paper can benefit the design process for RAM, improving the design efficiency for RAM.

Acknowledgements

This study is funded by Research Grants Council (C4074-22G), Innovation and Technology Commission (MHP/043/20, under PiH/278/22), Hong Kong Special Administrative Region, China, The Chinese University of Hong Kong (Project ID: 3110174), Provincial Natural Science Foundation of Anhui (2208085QA01) and Fundamental Research Funds for the Central Universities (WK0010000075).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Chinese University of Hong Kong [grant number Project ID: 3110174]; Fundamental Research Funds for the Central Universities [grant number WK0010000075]; Innovation and Technology Commission [grant number MHP/043/20, under PiH/278/22]; Natural Science Foundation of Anhui Province [grant number 2208085QA01]; Research Grants Council, University Grants Committee [grant number C4074-22G].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.