20
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Radiosensitivity of DNA in a specific protein-DNA complex: the lac repressor- lac operator complex

, , , , &
Pages 645-654 | Published online: 03 Jul 2009
 

Abstract

Purpose : To calculate the probability of radiation-induced frank strand breakage (FSB) at each nucleotide in the Escherichia coli lac repressor- lac operator system using a simulation procedure. To compare calculated and experimental results. To asses the contribution of DNA conformational changes and of the masking by the protein to DNA protection by the repressor. Materials and methods : Two structures of the complex were extracted from the PDB databank: crystallography- and NMR-based structures. Calculations were made of the accessibility of the atoms mainly involved in strand breakage (H4' and H5') to OH • and of the FSB probabilities, along: (1) DNA in the complex; (2) DNA in the complex depleted of the repressor; and (3) a linear DNA having the same sequence. An 80bp fragment bearing the operator was irradiated alone or in presence of the repressor. The relative probabilities of FSB at each nucleotide were determined using sequencing gel electrophoresis. Results : Calculations predict modulation of the accessibility of H4' and H5' atoms and of the probabilities of FSB along the DNA fragments of complexes. This is due to the protein-induced conformational change and to masking by bound protein. The best agreement with the experimental FSB was observed for calculations that use the crystallography-based structure. Conclusions : For specific DNA-protein complexes, our calculations can predict the protein radiolytic footprints on DNA. They show the significant contribution of the protein-induced DNA conformational change to DNA protection.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.