39
Views
7
CrossRef citations to date
0
Altmetric
Article

The mysteries of telomere structure and recognition: could radioprobing help?

, , &
Pages 805-811 | Received 12 Dec 2003, Accepted 04 Oct 2004, Published online: 03 Jul 2009
 

Abstract

Purpose: Telomeres are specialized DNA‐protein complexes found at the ends of eukaryotic chromosomes. In normal somatic cells these become shorter with each cell division and appear to control their replicative lifespan. However almost all tumours show activation of the enzyme telomerase, a specialised reverse transcriptase/DNA polymerase, that can add new telomeric repeats to the ends of chromosomes and this appears to be a key factor in the cell immortalization process. Consequently there is much current interest in the potential for inhibitors of telomere extension in the treatment of cancer. Several groups have found that it is possible to produce inhibitory molecules that target the telomeric repeat (substrate) DNA rather than the telomerase enzyme itself. This is thought to work because it has been found that in vitro, these DNA sequences can fold up into a four‐stranded (quadruplex) structure that the drugs recognise and stabilize, but which is not recognised by the enzyme. However, while medicinal chemists continue to base rational design programs on this hypothesis, there is currently very little evidence that these structures form in vivo, and that in vivo the drugs work by binding to them. To have incontrovertible evidence of where and how these telomerase inhibitors and DNA interact is therefore a pressing concern for a basic understanding of their mechanism of action and effective drug development.

Materials and methods: Radioprobing represents a valuable new approach to the study of DNA structures. Recently we have shown through computer simulations of radioprobing that the technique is a remarkably sensitive probe of quite fine details of DNA conformation. Here we report on our simulations of the binding of a radiolabelled telomerase inhibitor, related to a class of novel inhibitors under development at Nottingham, to a variety of possible structures for telomeric DNA.

Results and Conclusions: The predicted cleavage patterns prove to be very sensitive to the DNA structure, and the mode of binding of the drug. These results suggest that radioprobing experiments should be able to provide unambiguous evidence as to the ‘true’ nature of the telomere‐drug complexes, and so aid the rational design programme.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.