148
Views
29
CrossRef citations to date
0
Altmetric
Original

Irradiation of DNA loaded with platinum containing molecules by fast atomic ions C6+ and Fe26+

, , , , &
Pages 569-576 | Received 11 Jul 2006, Accepted 12 May 2007, Published online: 03 Jul 2009
 

Abstract

Purpose: In order to study the role of the Linear Energy Transfer (LET) of fast atomic ions in platinum-DNA complexes inducing breaks, DNA Plasmids were irradiated by C6+ and Fe26+ ions.

Material and methods: DNA Plasmids (pBR322) loaded with different amounts of platinum contained in a terpyridine-platinum molecule (PtTC) were irradiated by C6+ ions and Fe26+ ions. The LET values ranged between 13.4 keV/μm and 550 keV/μm. In some experiments, dimethyl sulfoxide (DMSO) was added.

Results: In all experiments, a significant increase in DNA strand breaks was observed when platinum was present. The yield of breaks induced per Gray decreased when the LET increased. The yield of single and double strand breaks per plasmid per track increased with the LET, indicating that the number of DNA breaks per Gray was related to the number of tracks through the medium.

Conclusions: These findings show that more DNA breaks are induced by atomic ions when platinum is present. This effect increases for low LET heavy atoms. As DSB induction may induce cell death, these results could open new perspectives with the association of hadrontherapy and chemotherapy. Thus the therapeutic index might be improved by loading the tumour with platinum salts.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.