230
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Track to the future: historical perspective on the importance of radiation track structure and DNA as a radiobiological target

Pages 759-768 | Received 07 Jun 2017, Accepted 27 Sep 2017, Published online: 08 Dec 2017
 

Abstract

Purpose: Understanding the mechanisms behind induced biological response following exposure to ionizing radiation is not only important in assessing the risk associated with human exposure, but potentially can help identify ways of improving the efficacy of radiotherapy. Over the decades, there has been much discussion on what is the key biological target for radiation action and its associated size. It was already known in the 1930s that microscopic features of radiation significantly influenced biological outcomes. This resulted in the development of classic target theory, leading to field of microdosimetry and subsequently nanodosimetry, studying the inhomogeneity and stochastics of interactions, along with the identification of DNA as a key target.

Conclusions: Ultimately, the biological response has been found to be dependent on the radiation track structure (spatial and temporal distribution of ionization and excitation events). Clustering of energy deposition on the nanometer scale has been shown to play a critical role in determining biological response, producing not just simple isolated DNA lesions but also complex clustered lesions that are more difficult to repair. The frequency and complexity of these clustered damage sites are typically found to increase with increasing LET. However in order to fully understand the consequences, it is important to look at the relative distribution of these lesions over larger dimensions along the radiation track, up to the micrometer scale. Correlation of energy deposition events and resulting sites of DNA damage can ultimately result in complex gene mutations and complex chromosome rearrangements following repair, with the frequency and spectrum of the resulting rearrangements critically dependent on the spatial and temporal distribution of these sites and therefore the radiation track. Due to limitations in the techniques used to identify these rearrangements it is likely that the full complexity of the genetic rearrangements that occur has yet to be revealed. This paper discusses these issues from a historical perspective, with many of these historical studies still having relevance today. These can not only cast light on current studies but guide future studies, especially with the increasing range of biological techniques available. So, let us build on past knowledge to effectively explore the future.

Acknowledgements

The author would like to thank Dudley Goodhead for his helpful comments.

Disclosure statement

The author reports no conflicts of interest.

Notes on contributor

Dr. Mark A. Hill is the head of the Radiation Biophysics Group and Director of the MSc course in Radiation Biology at the CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford. He has over 30 years’ experience in the field of radiation biology and physics, with research spanning both radiation protection and radiation oncology.

Additional information

Funding

Funding provided by the Medical Research Council Strategic Partnership Funding (MC-PC-12004) for the CRUK/MRC Oxford Institute for Radiation Oncology is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.