25
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

Pages 293-301 | Published online: 03 Jul 2009
 

Abstract

Abstract. The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 C, 0.5 h) separated by time intervals up to 8 h. DNA dsb were measured by PFGE and survival by the colony forming assay. In non-heated HeLa S3 cells repair of dsb was biphasic with the majority of breaks being repaired fast with a half-time of 14 min and only a minority were repaired slowly with a half-time of 130 min. Heat applied immediately after irradiation was found to cause an increase in both half-times but mainly to result in an increased fraction of slowly repairable dsb. The latter effect was shown to result from the formation of additional dsb. The number of additional dsb declined when irradiation and heat were separated by an interval at 37 C with a half-time of 120 30 min. This half-time was similar to the half-time of 100 20 min found for the loss of thermal radiosensitization studied for the same protocol. Both processes were recently found also to correlate in CHO cells but occurred much faster in rodent cells than in the human HeLa S3 cells used in the current study. These results show that in human cells, unlike previously suggested on the basis of rodent cells, thermal radiosensitization is still a substantial contributor to the killing efficacy of a combined treatment, even when irradiation and heat are separated by a time interval of 4 h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.