190
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of microcystins by an electrochemical oxidative electrode cell

, , , , , & show all
Pages 1027-1033 | Received 20 Jan 2012, Accepted 09 Sep 2012, Published online: 15 Nov 2012
 

Abstract

Microcystins (MCs), which are produced by cyanobacteria, are one of the most serious problems that threaten quality of drinking water and public health. In this study, an electrolysis cell with no electrolyte is demonstrated to degrade MCs (MC-RR, MC-YR and MC-LR) in both high and low concentrations. In addition, degradation of MCs was studied under different current densities. The results revealed that the electrolysis cell could degrade MCs successfully. It was observed that degradation of a single MC was faster than mixed types and statistical analysis revealed that the degradation rate of all the three MCs did not show much difference in mixed degradation. Analysis of hydroxyl radical concentration suggested a possible role of the hydroxyl radical in degradation of MCs. We propose that the electrolysis cell could be a promising treatment for effective removal of MCs in situ, especially in water purification plants where low amounts of salts (electrolytes) are present.

Acknowledgements

This research was funded by a Grant-in-Aid for Scientific Research (B) (21310049) and partially was supported by a Grant-in-Aid for Exploratory Research (24658272) from Japan Society for Promotion of Science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.