489
Views
17
CrossRef citations to date
0
Altmetric
Part I: Challenges and Developments

An assessment of the economic aspects of CO2 sequestration in a route for biodiesel production from microalgae

, &
Pages 1777-1781 | Received 10 Jun 2013, Accepted 12 Jun 2013, Published online: 05 Jul 2013
 

Abstract

Photosynthetic microalgae are unicellular organisms that, during their cultivation, can fix carbon dioxide efficiently from various sources, including the air and exhaust gases from industrial processes. This feature can lead to economic benefits in the production process of biodiesel by way of the clean development mechanism, for which carbon credits for environmental benefits may be granted and which will contribute towards reducing costs in the production process. This study seeks to quantify the contribution of carbon credits in the operating costs of a route for biodiesel production from microalgae, as proposed by Davis et al. [Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. 2011;88:3524–3531]. The results showed a reduction in annual operating costs by around 5%. This figure may be conservative, since the production process considered can be further improved to reduce operating costs and thus increase the contribution margin of carbon credits, which will reduce costs. On the other hand, the price of carbon may also rise in the future, thereby increasing its contribution towards a reduction in operating costs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.