551
Views
62
CrossRef citations to date
0
Altmetric
Part II. Research and Technological Advances

Effect of temperature change on power generation of microbial fuel cell

, , , &
Pages 1929-1934 | Published online: 08 Oct 2013
 

Abstract

Microbial fuel cell (MFC), which can directly generate electricity from biodegradable materials, has been receiving increasing attention. Effects of temperature change on power density, electrode potential, columbic efficiency, chemical oxygen demand removal and internal resistance in two chambers MFCs were examined in this paper. The maximum power density of 7.89 W/m3 was achieved at 37 °C, with 199% higher at 10 °C (2.64 W/m3), 24% higher at 30 °C (6.34 W/m3) and 21% higher at 43 °C, no steady power generation was observed at 55 °C. Low temperature to 10 °C might have a huge effect on anode potential, especially at higher current, but increasing the temperature to 43 °C had a main effect on the cathode performance when the MFCs have been established at 37 °C. The internal resistance of MFC was about 29 Ω at 37 °C, and increased 62% and 303% when MFC switched to 30 °C and 10 °C. Similarly, internal resistance increased 48% at 43 °C. The effect of temperature on MFC performance was expressed by internal resistance, the higher the internal resistance of MFC, the lesser the power density obtained. The Columbic efficiencies were 8.65% at 30 °C, 8.53% at 37 °C, and 13.24% at 43 °C. These results demonstrate that MFCs can effectively be operated over a wide range of temperatures.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.