772
Views
6
CrossRef citations to date
0
Altmetric
Articles

Application of fuzzy control on the electrocoagulation process to treat textile wastewater

, , &
Pages 3243-3252 | Received 18 Mar 2015, Accepted 29 May 2015, Published online: 07 Jul 2015
 

Abstract

Electrocoagulation (EC) is one of the effective ways of removing colour, turbidity and chemical oxygen demand from wastewater. In spite of the high-power consumption, EC has been gaining increasingly more attention due to its simplicity and effectiveness compared to the technical challenges and costs of conventional processes. Conductivity and pH are the main factors that affect the efficiency of wastewater treatment and its cost. Controlling the conductivity and pH of a wastewater treatment system is very important since it directly determines the amount of energy that must be used. We propose the use of fuzzy logic to control both conductivity and pH during the EC process, and we apply this approach in the treatment of textile wastewater. Removal efficiencies and operating costs of the EC process for dynamic and fuzzy-controlled cases are compared.

Acknowledgements

The authors gratefully acknowledge the Research Fund of Ankara University (No. 12A4240002) and TÜBİTAK (The Scientific and Technological Research Council of Turkey) for providing financial support for this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.