307
Views
14
CrossRef citations to date
0
Altmetric
Articles

The effects of exogenous antioxidant germanium (Ge) on seed germination and growth of Lycium ruthenicum Murr subjected to NaCl stressFootnote

, , , , &
Pages 909-919 | Received 21 Feb 2015, Accepted 02 Sep 2015, Published online: 14 Oct 2015
 

ABSTRACT

In this paper, we present the results of a study on the effects of exogenous antioxidant germanium (Ge) on seed germination and seedling growth, and its role as a radical scavenger that regulates related enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), under salt stress. Seeds were incubated in 0, 50, 100, 150, 200, 250 and 300 mM NaCl to determine the salt tolerance of the Lycium ruthenicum Murr seedlings and from the results, the critical and ultimate salt concentrations were chosen for the next experiment. Subsequently, two treatments (seeds soaked in Ge and Ge added to salt) with four concentrations of GeO2 (0, 5, 10 and 20 μM) were used with the critical (150 mM) and ultimate salt concentrations (250 mM). The results demonstrated that salt alone inhibited seed germination significantly (≥150 mM) and reduced seedling growth (≥200 mM). The addition of exogenous Ge to the salt solution, as well as soaking the seeds in Ge, attenuated the salt stress effects in a manner dependent on the dose of Ge, as indicated by the increased percentage of seeds that germinated and improved seedling growth. The addition of Ge also showed a significant reversal of salt stress on the activities of antioxidant enzymes, with a decrease in SOD and POD activity, but an increase in CAT activity with 150 mM NaCl, and enhancement of SOD, POD and CAT with 250 mM NaCl. Correspondingly, the level of malondialdehyde was decreased significantly by each Ge treatment under salt stress. Further, for L. ruthenicum, adding 10 Ge and seeds soaked in 5 Ge were the most effective treatments. To our knowledge, this is the first report to show the protective effects of exogenous Ge against salt-induced oxidative damage in L. ruthenicum seed germination and seedling growth. Thus, L. ruthenicum can be used in areas with salty soil and Ge can promote the plants’ salt tolerance

Notes

† The study was carried out at Research Institute of Forestry, Chinese Academy of Forestry.

Additional information

Funding

The work has been funded by the General Financial Grant from China Postdoctoral Science Foundation grant [2014M550886].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.