221
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

A compact process for treating oilfield wastewater by combining hydrolysis acidification, moving bed biofilm, ozonation and biologically activated carbon techniques

Pages 1171-1178 | Received 04 Jul 2015, Accepted 04 Oct 2015, Published online: 09 Nov 2015
 

ABSTRACT

A lab-scale hybrid system integrating a hybrid hydrolysis acidification (HA) reactor, a moving bed biofilm reactor (MBBR) and an ozonation-biologically activated carbon (O3-BAC) unit was used in the treatment of heavy oil wastewater with high chemical oxygen demand (COD) and low biodegradability. The effects of hydraulic retention time and ozonation time were investigated. The results show that under the optimal conditions, the effluent concentrations of COD, oil and ammonia were 48, 1.3 and 3.5 mg/L, respectively, corresponding to total removal efficiencies of 95.8%, 98.9% and 94.4%, respectively. The effluent could meet the grade I as required by the national discharge standard of China. The HA process remarkably improved the biodegradability of the wastewater, while the MBBR process played an important role in degrading COD. The ozonation process further enhanced the biodegradability of the MBBR effluent, and finally, deep treatment was completed in the BAC reactor. This work demonstrates that the hybrid HA/MBBR/O3-BAC system has the potential to be used for the treatment of high-strength oilfield wastewater.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.