626
Views
18
CrossRef citations to date
0
Altmetric
Articles

Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle–clay complex, activated charcoal, and reverse osmosis membranes

, , , , , , , , , , , , , & show all
Pages 2414-2427 | Received 23 Nov 2015, Accepted 01 Feb 2016, Published online: 07 Mar 2016
 

ABSTRACT

Kinetic studies on the stability of the pain killer paracetamol in Al-Quds activated sludge demonstrated that paracetamol underwent biodegradation within less than one month to furnish p-aminophenol in high yields. Characterizations of bacteria contained in Al-Quds sludge were accomplished. It was found that Pseudomonas aeruginosa is the bacterium most responsible for the biodegradation of paracetamol to p-aminophenol and hydroquinone. Batch adsorptions of paracetamol and its biodegradation product (p-aminophenol) by activated charcoal and a composite micelle (octadecyltrimethylammonium)–clay (montmorillonite) were determined at 25°C. Adsorption was adequately described by a Langmuir isotherm, and indicated better efficiency of removal by the micelle–clay complex. The ability of bench top reverse osmosis (RO) plant as well as advanced membrane pilot plant to remove paracetamol was also studied at different water matrixes to test the effect of organic matter composition. The results showed that at least 90% rejection was obtained by both plants. In addition, removal of paracetamol from RO brine was investigated by using photocatalytic processes; optimal conditions were found to be acidic or basic pH, in which paracetamol degraded in less than 5 min. Toxicity studies indicated that the effluent and brine were not toxic except for using extra low energy membrane which displayed a half maximal inhibitory concentration (IC-50) value of 80%.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by a research grant from Sanofi through the Peres Center for Peace. Their generous support is gratefully appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.