429
Views
20
CrossRef citations to date
0
Altmetric
Articles

Efficiency evaluation of the membrane/AOPs for paper mill wastewater treatment

, , &
Pages 1127-1138 | Received 04 Feb 2016, Accepted 25 Jul 2016, Published online: 17 Aug 2016
 

ABSTRACT

The treatment of pulp and paper mill wastewater by combining an ultrafiltration (UF) membrane and advanced oxidation processes (AOPs) was investigated at a bench scale. In the present study, the effects of impressive parameters on membrane fouling such as CaCl2 (mg/L), pH, and temperature (°C) were studied using response surface methodology (RSM). According to the results yielded, at the temperature of 45°C, pH of 10 and CaCl2 concentration of 400 mg/L, the fouling reached its minimum (32%). Therefore, scanning electron microscopy (SEM) analyses showed that the average thickness of cake layer on the UF surface decreased from approximately 75.37 µm to 11.38 µm by optimizing the operating conditions. The results showed the UF permeate quality is not sufficient. Thus, AOPs applied for permeate. In this way, the performance of sulfate and hydroxyl radicals, generated by the activation of oxidants, such as persulfate () and H2O2, by Fe(II) for removal efficiencies was examined. Accordingly, under the optimum conditions of Filtration/Fenton ([H2O2] = 15 mM, [Fe(II)] = 6 mM, pH = 3), the removal efficiency of chemical oxygen demand (COD), UV254, and UV280 was 95.02%, 86.74%, and 87.08%, respectively. This is while, in the optimum conditions of Filtration//Fe(II) ([] = 7 mM, [Fe(II)] = 2 mM and pH = 6), the removal efficiency of COD, UV254, and UV280 reached 94.96%, 92.04%, and 90.16%, respectively. This is indicative of the fact that the process of Filtration//Fe(II), with a lower oxidant and catalyst concentration and pH close to the neutral range is more efficient than that of Filtration/Fenton.

Acknowledgement

We thank the Environmental Research Institute and the Iran Pulp and Paper Industry (Chuka) for their support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.