198
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue

, , &
Pages 2032-2039 | Received 16 Mar 2016, Accepted 28 Sep 2016, Published online: 24 Oct 2016
 

ABSTRACT

The present study investigated the degradation of mercaptobenzothiazole (MBT), evaluating homogeneous and heterogeneous systems. An iron mineral residue from the desliming step of iron mining was used as a source in the Fenton-like reaction (advanced oxidation process). A granulometric analysis of the residue was performed and yielded fractions with high hematite (Fe2O3) and low quartz content in sieves from 74 to below 44 mm. In this particle size range, the hematite content from 58.9% to 67.4% and the Brunauer-Emmett-Teller area from 0.1345 to 1.3137 m2 g−1 were obtained. The zeta potential curves as a function of pH were obtained for the residue, the MBT solution and mixtures thereof. The adsorption of MBT in the residue and its degradation through the Fenton-like reaction were investigated. Adsorption tests and the Fenton-like reaction were carried out, where the MBT species and the residue are oppositely charged, yielding, respectively, 10% MBT adsorption on the surface of the residue and 100% MBT degradation by the Fenton-like reaction at pH 3, hydrogen peroxide concentration of 25 mg L−1, residue concentration of 3 g L−1, 200 rpm and 25°C, from a 100 mg L−1 MBT solution. MBT degradation was found to occur mainly by the heterogeneous Fenton-like process.

Acknowledgments

The authors would like to thank CAPES for the awarded scholarship.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.