124
Views
2
CrossRef citations to date
0
Altmetric
Articles

Si-based technologies for reduction of the pollutant leaching from landfills and mine tails

, ORCID Icon, &
Pages 1606-1609 | Received 05 Mar 2016, Accepted 23 Apr 2017, Published online: 09 May 2017
 

ABSTRACT

Monosilicic and polysilicic acids were shown to react with different types of the pollutants. The direction of these reactions can be managed by changing the monosilicic and polysilicic acid concentration in soil or water media. The objective of this study was to determine the effect of Si-treated calcium metallurgical slag and battery slag on the As, Se, Cd, Pb, Ni, Cr, and Hg mobility and bioavailability in mine tailings (Xikuangshan mine, Hunan, China). The results of column experiment showed that the Si-activated slags reduced leaching of As, Se, Cd, Pb, Ni, Cr, and Hg by 13–89% and transformed them into plant-unavailable forms. The greenhouse test has demonstrated that the Si-treated slags provided reinforced plant resistance to heavy metal toxicity and reduced pollutants in barley and pea leaves. Si-treated local solid slags could be used for creating the biogeochemical barriers on the pollutant streams from landfills or mine tailings sites.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by Russian Foundation for Basic Research [grant number16-05-00617].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.