412
Views
18
CrossRef citations to date
0
Altmetric
Articles

An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite

, , ORCID Icon, , , , & ORCID Icon show all
Pages 1638-1649 | Received 14 Dec 2016, Accepted 23 May 2017, Published online: 09 Jun 2017
 

ABSTRACT

Bio-calcite (BC) derived from waste hen eggshell was subjected to thermal treatments (calcined bio-calcite (CBC)). The BC and CBC were further modified via magnesiothermal treatments to produce modified bio-calcite (MBC) and modified calcined bio-calcite (MCBC), respectively, and evaluated as a novel green sorbent for P removal from aqueous solutions in the batch experiments. Modified BC exhibited improved structural and chemical properties, such as porosity, surface area, thermal stability, mineralogy and functional groups, than pristine material. Langmuir and Freundlich models well described the P sorption onto both thermally and magnesiothermally sorbents, respectively, suggesting mono- and multi-layer sorption. Langmuir predicted highest P sorption capacities were in the order of: MCBC (43.33 mg g−1) > MBC (35.63 mg g−1) > CBC (34.38 mg g−1) > BC (30.68 mg g−1). The MBC and MCBC removed 100% P up to 50 mg P L−1, which reduced to 35.43 and 39.96%, respectively, when P concentration was increased up to 1000 mg L−1. Dynamics of P sorption was well explained by the pseudo-second-order rate equation, with the highest sorption rate of 4.32 mg g−1 min−1 for the MCBC. Hydroxylapatite [Ca10(PO4)6(OH)2] and brushite [CaH(PO4)·2H2O] were detected after P sorption onto the modified sorbents by X-ray diffraction analysis, suggesting chemisorption as the operating sorption mechanism.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, for funding this work through the international research group project no [IRG-14-02].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.