279
Views
0
CrossRef citations to date
0
Altmetric
Articles

Response of microcystin biosynthesis and its biosynthesis gene cluster transcription in Microcystis aeruginosa on electrochemical oxidation

, , , , , ORCID Icon & show all
Pages 3593-3601 | Received 12 Apr 2017, Accepted 23 May 2018, Published online: 12 Jun 2018
 

ABSTRACT

Microcystin-LR (MC-LR), which is one of the most commonly found microcystins (MCs) in fresh water, has been proved to be a potential tumour promoter and classified as 2B by the International Agency for Research on Cancer. MC-LR decomposition and inhibition of MC-LR production in Microcystis aeruginosa were investigated under electrolysis condition using an electrolysis cell consisting of Ti/Pt electrodes and Nafion membrane. The relationship between the decrease in MC-LR concentration and transcription of MC-LR synthesis gene clusters was determined by performing real-time reverse transcription polymerase chain reaction (RT-qPCR) to monitor changes in the levels of transcription encoding mcyB and mcyD (cDNA to DNA) in M. aeruginosa NIES 1086 under electrolysis condition and three different conditions (i.e. oxygenated, air aerated and unaerated) as controls. Cell density decreased from day 2 under electrolysis than under the three controls. Intracellular MC-LR concentration was approximately 33 fg cell−1 under electrolysis from days 4 to 8, while those in the other conditions ranged in 40–50 fg cell−1. The mcyB transcription continuously decreased from day 2 to nondetectable level in day 6 under electrolysis, while this transcription was stabilised under the three controls. This result suggested that oxidative stress, such as hydroxyl radicals, played an important role in the down-regulation of mcyB and mcyD gene transcription level and the MC-LR concentration and cell density of M. aeruginosa.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Shandong University of Science and Technology [2014RCJJ015].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.