502
Views
7
CrossRef citations to date
0
Altmetric
Articles

KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water

ORCID Icon, , ORCID Icon &
Pages 238-250 | Received 18 Mar 2018, Accepted 20 Jun 2018, Published online: 20 Jul 2018
 

ABSTRACT

In the present study, the decolourization efficiencies of LP-Hg lamp, XeCl and KrCl excilamps at the same power density were compared for the decolourization of dyes in water by UV and UV/H2O2 processes in a batch reactor. Laboratory prototypes of XeCl and KrCl excilamps and a commercial LP-Hg lamp were studied as UV sources. Methylene Blue and Eliamine Blue dyes were used as model pollutants. The effect of the initial concentrations of dye and H2O2 in the TOC removal and kinetic parameters were also studied. The ratio of dye decolourization to the electric power consumption of the KrCl excilamp and LP-Hg lamp for the decolourization of Methylene Blue and Eliamine Blue were evaluated. As a result, the KrCl excilamp showed significantly higher decolourization efficiencies than LP-Hg lamp and XeCl excilamp, but the dye removal rate was significantly slower for Methylene Blue than for Eliamine Blue with this lamp. The KrCl lamp can be an alternative to conventional LP-Hg lamp for the decolourization of dyes by photodegradation, but it depends on the type of dye treated. The addition of H2O2 in a concentration between 0.05 and 0.09%v/v increases significantly the efficiency of the decolourization of Methylene Blue, and further increase does not lead to a higher increase in conversion. The experimental data were fitted to the one phase decay kinetic model with good agreement and the kinetic parameters were reported.

GRAPHICAL ABSTRACT

Acknowledgements

The authors acknowledge Carlos Quitiaquez from Laboratorio de Calidad de Aguas de la Pontificia Universidad Javeriana for the TOC analyses.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Pontificia Universidad Javeriana [Project No. 6366]; Universidad de Medellín [Project No. 849]; and Universidad EAFIT [Project No. 828-000056].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.