258
Views
7
CrossRef citations to date
0
Altmetric
Articles

The blocking effect of atmospheric particles by forest and wetland at different air quality grades in Beijing China

, , , , , , , & show all
Pages 2266-2276 | Received 10 Sep 2018, Accepted 15 Dec 2018, Published online: 31 Dec 2018
 

ABSTRACT

To understand the effect of forests and wetlands on air quality, the PM10 and PM2.5 concentration and meteorological data were collected in the forest and wetland in the Beijing Olympic Forest Park in China from May 2106 to May 2017. The blocking rates of forest and wetland to PMs were calculated under different air quality grades which were divided into six levels base on a technical regulation. And we have got three main conclusions. (1) The diurnal variations of PMs were different in the forest and wetland. It showed a first decrease and then an increase in the forest; the lowest value (PM10 = 40.00 µg/m3, PM2.5 = 5.37 µg/m3) was at approximately 12:00. In the wetlands, the lowest values were recorded at 16:00 (PM10 = 39.63 µg/m3 and PM2.5 = 15.89 µg/m3). (2) Another result showed that the blocking in the forest were significantly higher than that at the wetlands (P < .05), and the blocking effects were much better under lower air quality grades. The blocking rate of PM10 and PM2.5 was the highest when the air quality is excellent in the forest. When it comes to wetland, the highest blocking rate of PM10 appears at good air quality, and the highest of PM2.5 was at serious polluted. (3) In addition, there was negative correlation between PM concentrations and temperature, whereas the correlation between PM concentrations and relative humidity is positive. However, the correlation between blocking and meteorological parameters is weak.

GRAPHICAL ABSTRACT

Acknowledgements

The authors acknowledge the constructive comments provided by both the reviewers and editors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by the Natural Science Foundation of China (Grant Number 41877535) and the Fundamental Research Funds for the Central Universities (Grant Number 2016JX05).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.